Blogia
cerampiura

La Cerámica

Cerámica técnica

La palabra cerámica deriva del vocablo griego keramos, cuya raíz sánscrita significa "quemar". En su sentido estricto se refiere a la arcilla en todas sus formas. Sin embargo, el uso moderno de este término incluye a todos los materiales inorgánicos no metálicos que se forman por acción del calor.

Hasta los años 1950, los materiales más importantes fueron las arcillas tradicionales, utilizadas en alfarería, ladrillos, azulejos y similares, junto con el cemento y el vidrio. El arte tradicional de la cerámica se describe en alfarería. También puede buscarse la historia del rakú, singular técnica milenaria oriental.

Históricamente, los productos cerámicos han sido duros, porosos y frágiles. El estudio de la cerámica consiste en una gran extensión de métodos para mitigar estos problemas y acentuar las potencialidades del material, así como ofrecer usos no tradicionales. Esto también se ha buscado incorporándolas a materiales compuestos como es el caso de los cermets, que combinan materiales metálicos y cerámicos.

Propiedades mecánicas de la cerámica

Los materiales cerámicos son generalmente frágiles o vidriosos. Casi siempre se fracturan ante esfuerzos de tensión y presentan poca elasticidad, dado que tienden a ser materiales porosos. Los poros y otras imperfecciones microscópicas actúan como entallas o concentradores de esfuerzo, reduciendo la resistencia a los esfuerzos mencionados.

El módulo de elasticidad alcanza valores bastante altos del orden de 311 GPa en el caso del Carburo de Titanio (TiC). El valor del módulo de elasticidad depende de la temperatura, disminuyendo de forma no lineal al aumentar ésta.

Estos materiales muestran deformaciones plásticas. Sin embargo, debido a la rigidez de la estructura de los componentes cristalinos hay pocos sistemas de deslizamientos para dislocaciones de movimiento y la deformación ocurre de forma muy lenta. Con los materiales no cristalinos (vidriosos), la fluidez viscosa es la principal causa de la deformación plástica, y también es muy lenta. Aún así, es omitido en muchas aplicaciones de materiales cerámicos.

Tienen elevada resistencia a la compresión si la comparamos con los metales incluso a temperaturas altas (hasta 1.500 ºC). Bajo cargas de compresión las grietas incipientes tienden a cerrarse, mientras que bajo cargas de tracción o cizalladura las grietas tienden a separarse, dando lugar a la fractura.

Los valores de tenacidad de fractura en los materiales cerámicos son muy bajos (apenas sobrepasan el valor de 1 MPa.m1/2), valores que pueden ser aumentados considerablemente mediante métodos como el reforzamiento mediante fibras o la transformación de fase en circonia.

Una propiedad importante es el mantenimiento de las propiedades mecánicas a altas temperaturas. Su gran dureza los hace un material ampliamente utilizado como abrasivo y como puntas cortantes de herramientas.

Escrito por Rodríguez Vega.

Información sacada de Wiquipedia

0 comentarios